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Standard Model of global climate response to forcing

= Linearization of global top-of-atmosphere (TOA) Q — \T + F
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= Equilibrium warming (Q=0) in response to a doubling of atmospheric CO, (forcing F5, .~ 3.7 Wm2):

F2><
A

ECS = — Equilibrium climate sensitivity (ECS)
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Estimating climate sensitivity should be easy... righte

= All we need to do is estimate the net radiative feedback A\ Q — \T + F

= Method #1: Get \ from regression of () — F' against T over the CERES record

AQ — AF

= Method #2: )\ =
etho AT

, where A represents a change relative to pre-industrial

= Conclusions up front: There are a variety of distinct radiative feedbacks governing Earth’s
radiative response to warming, and feedback estimated from either method probably
doesn’t provide a reliable estimate of the feedback governing long-term warming

= Good news! CMIP5 models are generally consistent with radiative feedbacks
estimated by either method when treated in a consistent way

= Bad news! Poses a major challenge for constraining long-term warming from short
climate records; CMIP5 models suggest feedbacks will change over time as the pattern
of warming evolves, resulting in high ECS and large future warming



Regression-based feedbacks

CERES-EBAF and NASA GISTEMP
March 2000 to November 2017

Radiative forcing (F) subtracted from
global TOA radiation (Q) according to
Donohoe et al (2014)
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Regression-based feedbacks
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Regression-based feedbacks
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Regression-based feedbacks
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implies ECS = 2.4 K (1.6-4.2K, 5-95%)

T(K)

-F (W/m?2)

0.5+
0
GISTEMP
-0.5¢+
1t
° |
1
ol | | CERES
2005 2010 2015
years

(Forster & Gregory 2006, Murphy 2009,
Trenberth et al 2010, Dessler 2010,
Donohoe et al 2014, Zhou et al 2015)



Regression Coefficient

Regression Coefficient

Lagged-regression structure between Q and T

A'l

- [ ——Observations, monthly |

[ ——Observations, annual |

3 -2 -1 0 1 2 3
Lag [years]

Feedback estimate
sensitive to choice of:
* lag

e averaging period

* record length
(Forster 2016)

0.5

GISTEMP

2l CERES

2005 2010 2015
years

(Forster & Gregory 2006, Murphy 2009,
Trenberth et al 2010, Dessler 2010,
Donohoe et al 2014, Zhou et al 2015)




Lagged-regression structure between Q and T
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Using models to understand regression structure

A | * Long pre-industrial unforced

e ' control simulation of NCAR's

! Community Earth System Model
0.5 (CESMT1) reproduces the salient

0 features of observed regression
0.5 structure with feedback

4 ; . dependence on:

|| =——CESM1, monthly |
~—— EBM, monthly
1.5} 1 F CESM1 - 17 year intervals ° |Og
[ Observations, monthly | —— Observations (scaled)

* averaging period

= CESM1, annual

—— EBM, annual
CESM1 - 17 year intervals

— Observations (scaled)

T

Observations, annual |

3 2 1 0 1 2 3 5 4 3 2 101 2 3 4 5
Lag [years] Lag [years]



Regression Coefficient
[W/m?/K]

Regression Coefficient
[W/m?/K]

Using models to understand regression structure

= Long pre-industrial unforced

e control simulation of NCAR's

! Community Earth System Model
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1 [ ! dependence on:
15} 1 _EE"SAMT?T;zear intervals i |Og

[ Observations, monthly | —— Observations (scaled)

* averaging period

= Suggests that observed regression
structure mainly reflects internal
variability

= We can use models to understand
the regression structure

= CESM1, annual
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Infuition from a Hasselmann Model
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Infuition from a Hasselmann Model

Q Ocean Forced Radiatively Forced ENSO
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Infuition from a Hasselmann Model
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Infuition from a Hasselmann Model

Q Ocean Forced Radiatively Forced ENSO
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= Will each type of forcing engender the same radiative
Q feedbacke For this we need global climate models



CESM1 model hierarchy

= Consider a hierarchy of CESM1 pre-industrial unforced control simulations

® OCN: CAMS5 w/dynamic ocean (CESMT1) Atmosphere(Y), Slab(Y), ENSO(Y)

® SOM: CAMS w/thermodynamic slab ocean Atmosphere(Y), Slab(Y), ENSO(N)

® fSST: CAMS5 w/fixed sea-surface temperatures | Atmosphere(Y), Slab(N), ENSO(N)




Fixed SST simulation
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Fixed SST simulation

Q Fixed SST (fSST)
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Slab ocean model simulation
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Slab ocean model simulation

EBM 95%
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Slab ocean model simulation
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= Note: Stochastic
forcing for the
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from radiation,
leading to different
feedback estimate;
air temperature is
weakly radiatively
damped



Fully-coupled CESM1 simulation
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Modeling the lagged-regression

Fixed SST (fSST) Slab Ocean (SOM)  Fully Coupled (OCN)

10° A D G
Stochastic linear energy >
balance model (EBM): %’ -
ER
= Fit to individual simulations 5=
(fSST, SOM, ENSO band) sums & p— Ve
linearly to capture fully- —- -EBMIT+T,

coupled simulation

= Can be solved analytically
to understand lagged-
regression structure
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Modeling the lagged-regression

Stochastic linear energy r(lag) = Z i (Ut ) 1) acf(lag)
balance model (EBM): o

= Fit to individual simulations Regression slope at a given lag is:

(fSST, SOM, ENSO band) sums » average of distinct feedbacks of different modes
linearly to capture fully- » weighted by relative variance of each mode
coupled simulation * weighted by autocorrelation of each mode at

the given lag

= Can be solved analytically
to understand lagged-
regression structure



1.5¢

Regression slope (Wm=2K-1)
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r(lag) = ) X (

Regression slope at a given lag is:

» average of distinct feedbacks of different modes
* weighted by relative variance of each mode

* weighted by autocorrelation of each mode at
the given lag
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Fixed SST has single mode:
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Regression slope (Wm=2K-1)

Slab ocean model simulation

Ototal

oM r(lag) = ) X ( )acf(lag)

— EBM

Regression slope at a given lag is:

» average of distinct feedbacks of different modes
* weighted by relative variance of each mode

* weighted by autocorrelation of each mode at
the given lag

W% Slab ocean is sum of two modes:

T, + 1
Ql +C§ Q= dT
1 2 o 2
-‘4 _é 0 2 4 QQ - )\QTQ + Frad X —

dt
Lag (years)




Y: LVMI (8/m2)

= Temperature variance in one mode biases
regression estimates for all (regression dilution)
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b) Random error on X

Y: LVMI (g/m?)

c) Random error on Y

Y: LVMI (g/m?)

X: Systolic blood pressure (mm Hg)
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r(lag) = ) X ( )acf(lag)

Regression slope at a given lag is:

» average of distinct feedbacks of different modes
* weighted by relative variance of each mode

* weighted by autocorrelation of each mode at
the given lag

Slab ocean is sum of two modes:

Q) = \T
1 141 dT2

Q2 = A1 + Flaq X s



Fully-coupled model simulation

1.5
— CESM] r(lag) = Z)\ ( ) acf(lag)

Ototal

L | —EBM
&1}
& Regression slope at a given lag is:
= * average of distinct feedbacks of different modes
o 05 » weighted by relative variance of each mode
8— * weighted by autocorrelation of each mode at
7 the given lag
- 0
O
% Fully-coupled model is sum of (at least) three modes:
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Regression slope (Wm=2K-1)

Fully-coupled model simulation

— CESM1
- — EBM
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Ototal

r(lag) = ) X ( )acf(lag)

Regression slope at a given lag is:

» average of distinct feedbacks of different modes
* weighted by relative variance of each mode

* weighted by autocorrelation of each mode at
the given lag

Annual averaging preferentially eliminates fast,
air-sea interaction mode



Regression slope (Wm=2K-1)

Fully-coupled model simulation
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r(lag) = ) X (

Regression slope at a given lag is:

» average of distinct feedbacks of different modes
* weighted by relative variance of each mode

* weighted by autocorrelation of each mode at
the given lag

) actltag)

Ototal

While dynamics are well separated by fime-
scale, variance and covariance (regression)
amalgamate across time scales

Changing fractional variances & acf explains
regression sensitivity to lag and sampling



Fully-coupled model simulation

CES'\?\J\,L?ESSOCKS r(lag) = Z i ( ) acf(lag)
Ototal
Air-sea forced A =1.2
Regression slope at a given lag is:
Radiatively forced Ay = 0.9 e average of distinct feedbacks of different modes
* weighted by relative variance of each mode
ENSO A3 = 3.0  weighted by autocorrelation of each mode at

the given lag

While dynamics are well separated by fime-
scale, variance and covariance (regression)
amalgamate across time scales

Changing fractional variances & acf explains
regression sensitivity to lag and sampling



Fully-coupled model simulation

CESM1 feedbacks

(Wm-2K-T)

Air-sea forced A =1.2

Radiatively forced Ay = 0.9

ENSO A3 =3.0
Lero-lag r(0) = 1.2
regression

Peak regression .
(NOT ENSO!) r(f) =10

r(lag) = ) X (

Regression slope at a given lag is:

» average of distinct feedbacks of different modes
* weighted by relative variance of each mode

* weighted by autocorrelation of each mode at
the given lag

) actltag)

Ototal

While dynamics are well separated by fime-
scale, variance and covariance (regression)
amalgamate across time scales

Changing fractional variances & acf explains
regression sensitivity to lag and sampling



Fully-coupled model simulation

CESM1 feedbacks

(Wm-2K-1)

Air-sea forced A =1.2

Radiatively forced Ay = 0.9

ENSO A3 =3.0
Lero-lag r(0) = 1.2
regression

Peak regression .
(NOT ENSO!) r(f) =10

Global warming  Agua = 0.9

r(lag) = ) X (

Regression slope at a given lag is:

» average of distinct feedbacks of different modes
* weighted by relative variance of each mode

* weighted by autocorrelation of each mode at
the given lag

) actltag)

Ototal

While dynamics are well separated by fime-
scale, variance and covariance (regression)
amalgamate across time scales

Changing fractional variances & acf explains
regression sensitivity to lag and sampling



Fully-coupled model simulation

CESM1 feedbacks

(Wm-2K-1)

Air-sea forced A =1.2

Radiatively forced Ay = 0.9

CCSM4 feedbacks
(Wm'2K4) lag Z )\ (

A =15

) actltag)

Ototal

Regression slope at a given lag is:
A =1.5 » average of distinct feedbacks of different modes
* weighted by relative variance of each mode

ENSO A3 =3.0 A3 = 2.2« weighted by autocorrelation of each mode at
the given lag

Zero-lag 0) = 1.9 — 19
regression T( ) ' T(O) ' While dynamics are well separated by fime-

y scale, variance and covariance (regression)
Peakregression — — amalgamate across time scales
fstberdss r(6) = 1.0 r(0) =1.1 g

Changing fractional variances & acf explains

Global warming  Aana = 0.9 Aane = 1.3 regression sensitivity to lag and sampling
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= Lagged regression between TOA radiation and surface temperature can be
understood as a superposition of linear modes, each with a distinct radiative feedback

= Regression slope at a given lag is:

e average of distinct feedbacks of different modes
» weighted by relative variance of each mode
* weighted by autocorrelation of each mode at the given lag

= Regression slope is sensitive to lag and averaging period, and should not be expected
to give an estimate of long-term feedback

= Ongoing work:

» can feedbacks of individual modes be derived from observations?

» do any of the individual feedbacks correlate with long-term feedbacks across
modelse (potentially for an observational constraint on ECS)

» for how long will we have to observe before forced feedbacks emerge above
internal variabilitye (estimate from Cristi: minimum ~25 years)



Radiative feedbacks from stochastic variability in
surface temperature and radiative imbalance

Cristian Proistosescul, Aaron Donoher, Kyle C. Armour3’4, Gerard H. Roe5,

Malte F. Stuecker4’6, Cecilia M. Bitz"

Online at Geophysical Research Letters as of yesterday



Estimating climate sensitivity should be easy... righte

= All we need to do is estimate the net radiative feedback \ Q — \T + F

= Method #1: Get \ from regression of () — F' against T over the CERES record

AQ — AF

= Method #2: )\ =
etho AT

, where A represents a change relative to pre-industrial



Estimates of climate sensitivity

e e Q=\N+F

Energy budget constraints on
climate response
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Drew Shindell®, Bjorn Stevens”

and Myles R. Allen'

Qobs = 0.65 + 0.27 Wm?2

(years 2000-2009 relative to 1860-1879)
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Estimates of climate sensitivity
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Energy budget constraints on
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Estimates of climate sensitivity

correspondence

Energy budget constraints on
climate response

Alexander Otto™, Friederike E. L. Otto,

Olivier Boucher?, John Church?, Gabi Hegerl?,
Piers M. Forster®, Nathan P. Gillett®,

Jonathan Gregory’, Gregory C. Johnsoné,

Reto Knutti®, Nicholas Lewis', Ulrike Lohmann®,
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Estimates of climate sensitivity

correspondence

Energy budget constraints on
climate response

Alexander Otto™, Friederike E. L. Otto,

Olivier Boucher?, John Church?, Gabi Hegerl?,
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Jonathan Gregory’, Gregory C. Johnsoné,

Reto Knutti®, Nicholas Lewis', Ulrike Lohmann®,
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—— Ofto et al. ECS
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Estimates of climate sensitivity

= Global energy budget constraints produce
estimates of ECS that are quite a bit lower
than ECS simulated by CMIP5 models — Ofto et al. ECS
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Like-with-like comparisons of climate sensitivity

= Emerging consensus: model-observational

comparisons must be made in a like-with-like
way — Otto et al. ECS
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Like-with-like comparisons of climate sensitivity

= Emerging consensus: model-observational
comparisons must be made in a like-with-like
way, accounting for possibility that: Otto et al. ECS
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2) Feedbacks affected by the “efficacy”

of non-CO, forcings (Shindell 2014;
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1) Feedbacks vary as the pattern of warming evolves

(a) Years 1-20 warming pattern (b) Years 21-150 warming pattern
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CMIPS response to 4xCQO, (Andrews et al. 2015)



1) Feedbacks vary as the pattern of warming evolves

(c) = (b)-(a) Change in warming pattern
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CMIPS response to 4xCQO, (Andrews et al. 2015)



1) Feedbacks vary as the pattern of warming evolves
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CMIPS response to 4xCQO, (Andrews et al. 2015)

Radiative response to localized patches of
warming in NCAR's CAM4 (Dong et al., in preparation)

see also Andrews and Weblb 2017; Zhou et al. 2016;
Zhou et al. 2017
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1) Feedbacks vary as the pattern of warming evolves
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1) Feedbacks vary as the pattern of warming evolves

SST increase in W Pacific
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1) Feedbacks vary as the pattern of warming evolves

Global radiative feedback

(c) = (b)-(a) Change in warming pattern
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CMIPS response to 4xCQO, (Andrews et al. 2015) Global feedback response to localized patches of

warming in NCAR's CAM4 (Dong et al., in preparation)

see also Andrews and Weblb 2017; Zhou et al. 2016;
Zhou et al. 2017



1) Feedbacks vary as the pattern of warming evolves

(c) CMIP5 AOGCM-mean
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1) Feedbacks vary as the pattern of warming evolves

» Feedbacks under transient warming (\) are more 25 CMIP5 models
negative than those at equilibrium (o) '
= Inferred (or instantaneous) climate sensitivity (ICS)
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see also Proistosescu & Huybers 2017



1) Feedbacks vary as the pattern of warming evolves

» Feedbacks under transient warming (\) are more
negative than those at equilibrium (o)

= Inferred (or instantaneous) climate sensitivity (ICS)
is generally smaller than equilibrium climate
sensitivity (ECS)
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* Global energy budget constraints provide
estimates of ICS only, so should be compared with
model values of ICS (not ECS!)
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CMIPS response to CO, forcing (Armour 2017)

see also Proistosescu & Huybers 2017



1) Feedbacks vary as the pattern of warming evolves

» Feedbacks under transient warming (\) are more

negative than those at equilibrium (o)

= Inferred (or instantaneous) climate sensitivity (ICS)
is generally smaller than equilibrium climate
sensitivity (ECS)
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* Global energy budget constraints provide
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1) Feedbacks vary as the pattern of warming evolves
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= Inferred (or instantaneous) climate sensitivity (ICS)
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2) Feedbacks depend on the type of radiative forcing

» Feedbacks under historical forcing may differ

from those under CO, forcing alone (Shindell 2014;
Marvel et al. 2015) — Otto et al. ICS
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= Radiative Forcing Model Intercomparison Project
(RFMIP; Pincus et al. 2016) protocol produces
coupled model estimates of forcing and
feedbacks over historical period
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2) Feedbacks depend on the type of radiative forcing

» Feedbacks under historical forcing may differ
from those under CO, forcing alone (Shindell 2014;
Marvel et al. 2015)

= Radiative Forcing Model Intercomparison Project
(RFMIP; Pincus et al. 2016) protocol produces
coupled model estimates of forcing and
feedbacks over historical period
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Historical simulations with GISS-E2-R

(Marvel et al. 2015)




2) Feedbacks depend on the type of radiative forcing

» Feedbacks under historical forcing may differ

from those under CO, forcing alone (Shindell 2014; 0.8 ‘ ‘
Marvel et al. 2015) — Ottoetal. IC3
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3) Feedbacks vary due to internal climate variability

* Feedbacks under historical forcing can vary due
to only internal climate variability (Dessler et al. 2018)
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3) Feedbacks vary due to internal climate variability

* Feedbacks under historical forcing can vary due
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3) Feedbacks vary due to internal climate variability

» Feedbacks under historical forcing can vary due

to only internal climate variability (Dessler et al. 2018) 0.8 | ‘
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3) Feedbacks vary due to internal climate variability

* Feedbacks under historical forcing can vary due

to only internal climate variability (Dessler et al. 2018) ‘ ‘
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= Key question: what global feedback (and ICS)

has the observed warming pattern engendered? 06 I CESMTECS |
» absent this knowledge, this internal '

variability uncertainty is swamped by the

. H CESMI1 LE
forcing uncertainty

members ICS

» can be thought of as uncertainty that
would remain given perfect observations of
forcing, heat uptake, etc
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3) Feedbacks vary due to internal climate variability

Observed warming pattern

AMIP Il boundary conditions (Hurrell et al. 2008)

Global radiative feedback

DN
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Global feedback response to localized patches of
warming in NCAR's CAM4 (Dong et al., in preparation)
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3) Feedbacks vary due to internal climate variability

= Prescribed sea-surface temperature (SST)

simulations produce the same feedbacks as are 0.8 ‘ ‘
induced by climate forcings (Haugstad et al. 2017) — Otfoefal. ICS
* Cloud Feedback Model Infercomparison Project I CESM1 ECS
(CFMIP; Webb et al. 2017) protocol produces 0.6 i
estimates of feedbacks associated with observed
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3) Feedbacks vary due to internal climate variability

= Prescribed sea-surface temperature (SST)

simulations produce the same feedbacks as are 0.8 ‘ ‘
induced by climate forcings (Haugstad et al. 2017) . — Otfoefal. ICS
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3) Feedbacks vary due to internal climate variability
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3) Feedbacks vary due to internal climate variability
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3) Feedbacks vary due to internal climate variability

SST Pattern (2000s - 1950s)
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3) Feedbacks vary due to internal climate variability

SST Pattern (2000s - 19503) K, Global mean TOA residual (sum =0) W/m;fm—a

0Q ASST; oL

dSST |, 7 Adobal gap 8SST |, ASST,

This quantity equals zero in the
global mean (by definition) but tells
you what regions most contribute to
global feedback changes due to
regional radiative response to
warming being different from the
global feedback

West Pacific warming (hegative
feedback) wins out over all other
regions (generally positive
feedbacks), small contribution from
Southern Ocean cooling
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3) Feedbacks vary due to internal climate variability

* Prescribed sea-surface temperature (SST)
simulations produce the same feedbacks as are
induced by climate forcings (Haugstad et al. 2017) — Otfoetal. ICS
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* Cloud Feedback Model Infercomparison Project
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Dong, Malte Stuecker, Cristi Proistosescu, Tim Andrews, Jonathan
Gregory, Thorsten Mauritsen, Levi Silvers & David Paynter)



Probability density [1/°C]

s o o o
S B (=)} oo
‘

(=1
o 4

1

2 3 4 5 6
ICS or ECS [°C]

Parting thoughts

= Apparent offset between global energy budget constraints and models stems
from sloppy comparison between observation-based estimates of ICS and
modeled estimates of ECS
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= Apparent offset between global energy budget constraints and models stems
from sloppy comparison between observation-based estimates of ICS and
modeled estimates of ECS

= Accounting for feedback dependence on evolving pattern of CO,-forced
warming (slow warming of E. Pacific and Southern Ocean) gives model values
of ICS that are in agreement with observation-based values (though still high)
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= Apparent offset between global energy budget constraints and models stems
from sloppy comparison between observation-based estimates of ICS and
modeled estimates of ECS

= Accounting for feedback dependence on evolving pattern of CO,-forced
warming (slow warming of E. Pacific and Southern Ocean) gives model values
of ICS that are in agreement with observation-based values (though still high)

= Accounting for the observed pattern of warming being pretty odd gives
model values of ICS that are in good agreement
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= Apparent offset between global energy budget constraints and models stems
from sloppy comparison between observation-based estimates of ICS and
modeled estimates of ECS

= Accounting for feedback dependence on evolving pattern of CO,-forced
warming (slow warming of E. Pacific and Southern Ocean) gives model values
of ICS that are in agreement with observation-based values (though still high)

= Accounting for the observed pattern of warming being pretty odd gives
model values of ICS that are in good agreement

= How can ECS be constrained from observations, given that the observational
record has coincided with a particularly strange pattern of warminge We are
unsure if future warming patterns predicted by models are realistic given that
they fail to get the observed warming pattern right
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= Apparent offset between global energy budget constraints and models stems
from sloppy comparison between observation-based estimates of ICS and
modeled estimates of ECS

= Accounting for feedback dependence on evolving pattern of CO,-forced
warming (slow warming of E. Pacific and Southern Ocean) gives model values
of ICS that are in agreement with observation-based values (though still high)

= Accounting for the observed pattern of warming being pretty odd gives
model values of ICS that are in good agreement

= How can ECS be constrained from observations, given that the observational
record has coincided with a particularly strange pattern of warminge We are
unsure if future warming patterns predicted by models are realistic given that
they fail to get the observed warming pattern right

= How much of the intermodel spread in ECS might be due cloud response to
different SST patterns, rather than different cloud physics/parameterizations?






An aside: does ECS or ICS matter more for fransient warminge

= Transient warming is weekly correlated with ECS

r=0.67

TCR [°C]

ECS [°C]

TCR = warming at year 70, the time of CO,
doubling under 1%/yr CO2 ramping



An aside: does ECS or ICS matter more for fransient warminge

= Transient warming is weekly correlated with ECS

= Transient warming is highly correlated with ICS
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doubling under 1%/yr CO2 ramping



Like-with-like comparisons of climate sensitivity

= Emerging consensus: model-observational
comparisons must be made in a like-with-like
way, accounting for possibility that:

1)

3)

4)

Feedbacks (\) vary over time as the

spatial pattern of warming evolves
(Armour 2017; Proistosescu & Huybers 2017)

Feedbacks affected by the “efficacy”

of non-CO, forcings (Shindell 2014;
Kummer & Dessler 2014; Marvel et al. 2015)

Feedbacks depend on natural
variability in the pattern of warming

Different definitions of global-mean
temperature used in models vs

observations (Cowtan et al. 2015;
Richardson et al. 2016)
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4) Sensitivity estimates depend on global temperature definition

= Global temperature record is a blend of SST over
ocean, near-surface air temperature over land;
lacks full global coverage — Otfoetal. ICS
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= Global temperature in models is calculated as a
full global average of near-surface air temperature
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HadGEM2, HadAM3, ECHAMéG, AM2.1, AM3, AM4 (Yue
Dong, Malte Stuecker, Cristi Proistosescu, Tim Andrews, Jonathan
Gregory, Thorsten Mauritsen, Levi Silvers & David Paynter)



4) Sensitivity estimates depend on global temperature definition

= Global temperature record is a blend of SST over

ocean, near-surface air temperature over land; 0.8 ‘ | |
lacks full global coverage — Ottoetal. ICS
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full global average of near-surface air temperature

* Blending/masking models consistently with
observations suggests an increase to Otto et al. ICS
estimate (Richardson et al. 2014)
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= Apparent offset between global energy budget constraints and models stems
from sloppy comparison between observation-based estimates of ICS and
modeled estimates of ECS

= Accounting for feedback dependence on evolving pattern of CO,-forced
warming (slow warming of E. Pacific and Southern Ocean) gives model values
of ICS that are in agreement with observation-based values (though still high)

= Accounting for the observed pattern of warming being pretty odd gives
model values of ICS that are in good agreement

= Accounting for consistent global temperature definitions brings model ICS
values to low end of observation-based ICS values



